

Aquimed project

Participatory design of adaptive groundwater management strategies and instruments in Mediterranean coastal water scarce areas as a response to climate change

Two initial ideas

Work in coastal aquifers in risk/current situation of overexploitation, as areas all the more vulnerable to CC impacts

 Articulate a common research programme with 3 research "threads": participation, foresight and groundwater resource management instruments

Main objective

- To develop methods to support local stakeholders in:
 - 1) undertaking foresight analyses
 - 2) assessing adaptive strategies of management of groundwater resources and uses,
 - in order to reach a sustainable use of these resources.

Presentation of the project

- Partners
- Case studies
- The project objectives and their backgroundThe work packages

Partners

- Main partners:
 - SOCIUS Technical University of Lisbon
 - ENA Meknes
 - Brgm
 - G-Eau Water Research Unit (CIRAD, Cemagref)

 Collaboration with local institutions in each study area (catchment management agency, local government, local office of the Ministry of Agriculture)

Study areas: 3 coastal aquifers

Monaco Isola di Gorgor Roussillon Basilique El Pilar, Espagne Barcelona (Barcelone) **Basilique** Sa Madrid Portugal Isola Asinara Lisbonne, Portugal

Formenter

Minorca

Sardegna (Sardinia)

Altitude 1242.34 mi

Isola Piano

Hautes-Alpes

Querença-Silves

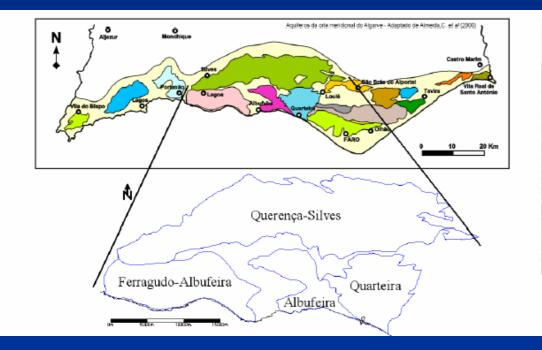
> Gibralta Tanger

0°

4

El-Jazair , (Alger)

Rabat Dar-el-Beida meknes


Chaouia

© 2007 Europa Technologies Image © 2007 NASA Image © 2007 TerraMetrics © 2007 Cnes/Spot Image Mise au point ||||||||| 100%

Pointeur 38°26'59.22" N 3°27'37.01"

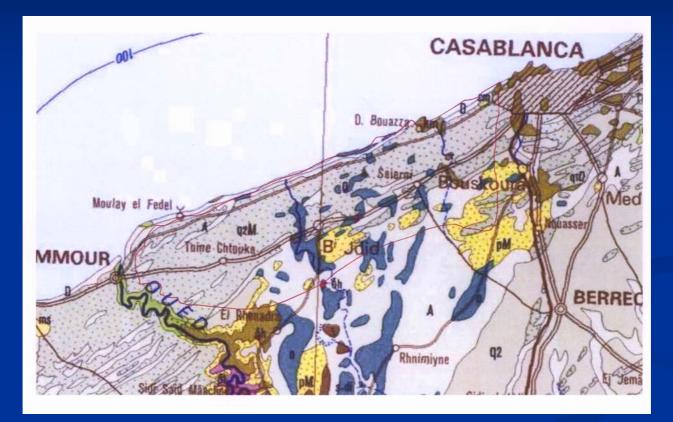
nto

The Querença-Silves, Portugal

- karstic aquifer: the main aquifer in the Algarve Region
- Groundwater uses, mainly irrigation
- Risks of overdraft, seawater intrusion and pollution by fertilizers
- Recently created Algarve hydrologic region administration, which will be in charge of setting up groundwater resource management plan

The Roussillon Plain multilayer Aquifer, France

Two main layers: Quaternary and Pliocene


Groundwater uses:

- Irrigation
- Local government managed drinking water networks
- Individual wells for lawn irrigation
- A local planning and decision committee (CLE) and planning document (SAGE) in process

The Coastal Chouia Aquifer, Morocco

 Uses: mainly irrigation and some wells for drinking water networks

Seawater intrusion since the 90s due to drought and groundwater pumping => strong decrease in agricultural activities in the region

 Recently created catchment management agency

4 Specific objectives

3 scientific objectives

- 1) one on PARTICIPATION issues
- 2) one on FORESIGHT analysis including CC impacts
- 3) one on GROUNDWATER RESOURCE MANAGEMENT

Knowledge sharing objective

- 4) two-way exchange of knowledge and experience between stakeholders and researchers of the three working areas.
- Implementation of these 3 scientific objectives in the 3 case studies, very diverse in terms of :
 - 1) level of stress over resource use;
 - 2) institutional process to manage the resource,
 - 3) data available for management and foresight analyses.

1. PARTICIPATION

 General context: an acknowledged "participation paradigm" of water users in water resource management but

■ Unclear implementation ways

Shortcoming of some past participative processes

In the study areas:

 Existing opportunities for participation in planning and reflection about management tools

1. PARTICIPATION

Strong constraints

- Many unregistered users, Weak user organizations
- Situation way out of Ostrom principles for long-enduring Common Pool Resource managements (e.g., resource dynamics largely unknown, uneasy identification of resource limits, high control cost of groundwater uses)
- Unbalanced negotiation capacities among stakeholders
- Very different perception of the resources, its dynamics, and different "actualization rates"

Scientific objective: Analysis of stumbling-blocks and opportunities to set up genuine participation of stakeholders in a situation of numerous weakly organized small-scale water users.

2. FORESIGHT

CC: existence of regional climatic models that may be discussed by stakeholders

Scientific objective: How to design and evaluate evolution scenarios with stakeholders, that include CC estimated impacts?

In the study areas, high impact of anthropogenic activities on water resources: how to clarify the interrelation between CC factors and other human related ones (social, economics) in foresight analyses?

2. FORESIGHT

- How to support local stakeholders in reflecting, from their everyday life and current perceptions of CC:
 - on foresight analyses that take into account CC perspectives?
 - from local, individual level and discussion of *individual adaptation* to scenarios that include CC prospects, to a discussion of *possible adaptation and management strategies at resource level?*
- How to use existing knowledge of water resources, uses and CC prospects:
 - In forms that may be understood and manipulated by local stakeholders,
 - In order to support discussions over possible future scenarios and management objectives?

3. GROUNDWATER RESOURCE MANAGEMENT

Growing stake around the world and more specifically around the Mediterranean

- Some successful management strategies set up in situations of:
 - Only large-scale users (cities, large-scale farmers)
 - Strong water management organizations and institutions, with high technical and financial capacities
- Much less successful implementation of strategies in the (much more common) situations with
 - Numerous informal/small-scale water users
 - Limited technical and financial capacities
 - The bulk of situations: Tragedy of the Commons
 - No existing blueprint emerging on the international stage

Scientific objective: The identification and analysis of management strategies and instruments of coastal aquifer resources and uses

How to accompany stakeholders in the identification, analysis and comparison of possible management strategies and tools based on previous foresight analyses to:

- Improve adaptation
- Possibly manage water uses

In French and Portuguese case studies: strong interactions between surface water and groundwater resources

Main Work Package organization

Year 1

Year 2

WP1. Knowledge base and participation analysis

WP2. Foresight analysis

WP3. Management strategies and instruments

WP 1: PARTICIPATION

- Knowledge base on the 3 case studies
- Stakeholder analysis
 - Representativity of existing user organizations
 - Analysis of existing participation spaces for water resource planning and management
- Proposition for conception of workshops (foresight analysis and discussion about management strategies and tools)
 - Group composition
 - How to support dialogue (social learning, acknowledgment of the plurality of points of view, objectives and legitimacies)
 - Take into account possible asymmetries in power/information/negotiation capacities
- Monitoring of the workshops

WP 2: FORESIGHT

- Analysis of stakeholder perception of the water resource dynamics and of current CC, and identification of the CC indicators they judge relevant for their activities.
- Construction of future scenarios with stakeholders,— including available information on CC or on socio-economic data at local level
- One way of representing CC: repetition of the occurrence of crisis that has occurred in the past
- Work with homogeneous groups of stakeholders and later mixed groups

WP 3: RESOURCE MANAGEMENT

Going from an analysis of « adaptation » at user level to a discussion at the resource level

 Workshops to identify, analyze and compare possible instruments to manage the resource Kick-off meeting held on Oct 18-20 in France
Participation of the representatives of the local catchment management agencies of the 3 study areas

Thank you for your attention